Close Menu
New York Examiner News

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    North West shares teaser of new single with father Kanye, ‘Piercing On My Hand’

    January 17, 2026

    Trump launches trade war vs. NATO after European countries sent troops to Greenland

    January 17, 2026

    'Scourge' of sexual predators, violent criminals being removed from Minneapolis

    January 17, 2026
    Facebook X (Twitter) Instagram
    New York Examiner News
    • Home
    • US News
    • Politics
    • Business
    • Science
    • Technology
    • Lifestyle
    • Music
    • Television
    • Film
    • Books
    • Contact
      • About
      • Amazon Disclaimer
      • DMCA / Copyrights Disclaimer
      • Terms and Conditions
      • Privacy Policy
    New York Examiner News
    Home»Science»How to Engineer Buildings That Withstand Earthquakes
    Science

    How to Engineer Buildings That Withstand Earthquakes

    By AdminFebruary 23, 2023
    Facebook Twitter Pinterest LinkedIn WhatsApp Email Reddit Telegram
    How to Engineer Buildings That Withstand Earthquakes



    Our planet is covered by tectonic plates that are slowly moving around, pushing into or sliding past one another along boundaries called faults. Friction sometimes causes two of these plates to get stuck to each other spots along a fault. Tension builds up over years, decades or even centuries until suddenly the fault snaps. The two sides lurch past each other, unleashing an earthquake.

    From the place where the fault ruptures, seismic waves ripple outward in all directions. When they reach Earth’s surface, they can set buildings or any other structures shaking—violently and destructively if the quake is strong and close enough, as were the two massive temblors that struck Turkey and Syria on February 6, which was followed by a large aftershock on the same day.

    These quakes killed more than 45,000 people, many of them in collapsed buildings. Though earthquakes can’t be prevented or predicted, science does have some ways to protect buildings—and the people inside them. Scientific American spoke with several earthquake engineering experts to learn more about how using the right building methods can prevent homes, offices and other structures from succumbing to the capricious movements of the Earth.

    What happens to a building during a quake?

    Imagine you’re driving a car down the road, and you suddenly need to stop. As you slam on the brakes, those groceries sitting on the passenger seat (and anything else not strapped down) will fly through the air in the same direction and at the same speed as the car was originally going. This is because of inertia—an object’s tendency to stay at rest or to maintain a uniform speed and path until some other force acts on it. That same tendency is what puts a building at risk during an earthquake.

    During a quake, the ground beneath a building moves quickly back and forth. But because the building has mass, it has inertia. “The earthquake is shaking the ground, and the building is trying to stay put,” says Ertugrul Taciroglu, a structural engineer at the University of California, Los Angeles. But once it does start moving, the building wants to keep going in whatever direction the earthquake has pulled it—essentially, it is always lagging behind the ground motion. These lags generate horizontal inertial forces on the building, causing any vertical columns and walls to deform at an angle (creating a parallelogram shape if one were looking at a side view of a rectangular building). When a building has multiple stories, each story is holding up the weight of those above it. That means lower stories have to bear larger inertial forces than those above. If walls and columns are not properly designed or reinforced, they may not be able to support the weight they once held.

    The larger an earthquake is and the closer it is to the surface —and the nearer a building is to the fault rupture—the larger the inertial forces will be on that building during a quake. The type of ground a building is sitting on can also play a role: compared with hard rock, looser soils magnify ground motions.

    How do we build buildings so they don’t collapse during an earthquake?

    To keep a building intact when an earthquake hits, it needs to be constructed to resist horizontal inertial forces. Exactly how that can be done depends on the building material being used. Let’s focus on two of the most common: concrete and steel. Much of the building stock in the affected area of Turkey used these materials.

    Under normal circumstances, concrete is a great material for holding the weight of a building because it performs well under what engineers call compression. A concrete building can easily last for decades if it only has to support its own weight. Yet the quake-generated inertial forces that set vertical walls and columns swaying put the concrete into tension, the opposite of compression. Although the forces are trying to stretch the concrete out, “it doesn’t give. It doesn’t let the building form move but tries to hold on really tight, and it generates these inertial large forces,” says Perry Adebar, a structural engineer at the University of British Columbia. The stressed concrete columns and walls can eventually crack and fail because they can no longer support the weight above them.

    Concrete is still one of the most widely used building materials in the world, in part because it is cheap and abundant and because it has an ability to bear structural weight. To make concrete more suitable for seismically active areas, engineers add steel (in the form of rebar), which is much more flexible. “You have to put steel in wherever you’re going to have tension,” Adebar says.

    Steel behaves elastically when subjected to a certain amount of tension. Think of tugging gently on the bottom of a wire coat hanger and seeing it bounce back into shape when you let go. But when subjected to larger amounts of tension, such as in a very strong quake, steel “becomes plastic and deformed,” Adebar explains. Think of pulling hard enough on the bottom of the coat hanger that it bends out of shape. In the case of a building during an earthquake, “that’s just exactly what you want,” Adebar says, because the deformed steel has effectively absorbed those inertial forces but can still hold up weight.

    Doesn’t that mean the building is damaged?

    In a large earthquake, yes. Steel-reinforced concrete buildings can still sustain considerable damage, possibly to the point that they will be unusable after the quake. This has to do with the way governments set building codes, which tell engineers how to design a building to withstand a certain level of earthquake shaking. Codes, including those in the U.S. and Turkey, generally require that a building achieves what is called “life safety” under a given maximum expected earthquake in an area. “Our seismic codes are only a minimum requirement,” says Sissy Nikolaou, research earthquake engineer at the National Institute of Standards and Technology. “You just want these buildings at least to give you the chance to get out of it alive when the big one happens, under the assumption that they may be seriously damaged.” The situation is akin to a car that crumples in a crash: the vehicle absorbs the impact to protect passengers, but it is totaled.

    There are, of course, different standards for buildings or other infrastructure that are considered critical and that need to keep functioning after a quake—for example, hospitals. Experts such as Nikolaou are also beginning to rethink the life-safety standard so that more structures are usable after an earthquake. Doing so could avoid situations where people are kept out of their homes for months or years. Many people in Turkey now face this possibility, with tens of thousands of buildings deemed at risk of collapse from damage sustained in the February 6 quakes.

    There are ways to keep buildings habitable after an earthquake. Some methods involve smarter designs with common materials such as steel-reinforced concrete. It can also require more technological approaches, such as “base isolation.” With this technique, a building is not rigidly attached to its foundation. Instead it sits atop flexible structures that decouple it from the foundation—and therefore from shaking ground. This type of system adds to construction costs, though, and some building owners would be unable or unwilling to pay for it. In the U.S., it has been used to protect crucial structures such as hospitals and to retrofit historic buildings while preserving their original architecture. Some hospitals in Turkey had base-isolation systems and withstood the recent quakes there.

    Why might a building fail even if it is built to earthquake codes?

    Buildings are designed to withstand a certain level of shaking, based on the seismic risks in their location. A building in Los Angeles, for example, would be built to withstand a larger earthquake than one in New York City. But seismologists don’t always know exactly how big of an earthquake a fault can produce. “The major difficulty in engineering design is the uncertainty about the future earthquakes, because we don’t know what will happen precisely,” Taciroglu says. The bigger the magnitude, the rarer the quake. Some of the biggest may only happen every few hundred or thousand years—but modern seismic measurements only go back a few decades. Many seismologists thought the East Anatolian Fault—the one involved in the Turkey-Syria quakes—was likely to produce a maximum magnitude of 7.4 or 7.5. But the February 6 earthquake was a 7.8—about four times bigger on the logarithmic scale of earthquake magnitudes. So it is possible that some structures built to code in Turkey may simply have experienced more force than they were built to withstand, Taciroglu says.

    Building codes also evolve as science’s understanding of earthquake risk and engineering change, so a building that was been built to code at the time it was constructed might not meet updated standards. Retrofitting such buildings is often cost-prohibitive. Taciroglu says this is likely the reason many of the buildings in Turkey were severely damaged or collapsed.

    Human error can also come into play. It may range from intentional, profit-driven cuttings of corners to honest mistakes that can happen at various points in the design or building process—and that aren’t revealed unless something like a massive earthquake comes along.



    Original Source Link

    Share. Facebook Twitter Pinterest LinkedIn WhatsApp Email Reddit Telegram
    Previous ArticleThe Plough – first-look review
    Next Article Alphabet Layoffs Hit Trash-Sorting Robots

    RELATED POSTS

    How Does the Hive Mind Work in ‘Pluribus?

    January 17, 2026

    RFK, Jr., shifts focus to questioning whether cell phones are safe. Here’s what the science says

    January 17, 2026

    Meat may play an unexpected role in helping people reach 100

    January 16, 2026

    OpenAI Invests in Sam Altman’s New Brain-Tech Startup Merge Labs

    January 16, 2026

    Americans Overwhelmingly Support Science, but Some Think the U.S. Is Lagging Behind: Pew

    January 15, 2026

    Woolly rhino genome recovered from meat in frozen wolf pup’s stomach

    January 15, 2026
    latest posts

    North West shares teaser of new single with father Kanye, ‘Piercing On My Hand’

    North West has shared a teaser of a new collaborative single with her father Kanye West – check…

    Trump launches trade war vs. NATO after European countries sent troops to Greenland

    January 17, 2026

    'Scourge' of sexual predators, violent criminals being removed from Minneapolis

    January 17, 2026

    Chris D’Elia calls comedians ‘spineless’ following sexual misconduct allegations

    January 17, 2026

    Reddit Has Thoughts on Paris Hilton Cookware. So Do We

    January 17, 2026

    How Does the Hive Mind Work in ‘Pluribus?

    January 17, 2026

    The Uncertain Future Of The 4-Part Western Epic

    January 17, 2026
    Categories
    • Books (1,007)
    • Business (5,912)
    • Events (29)
    • Film (5,848)
    • Lifestyle (3,958)
    • Music (5,949)
    • Politics (5,913)
    • Science (5,263)
    • Technology (5,842)
    • Television (5,526)
    • Uncategorized (6)
    • US News (5,900)
    popular posts

    One Man’s Quest to Reforest the Rio Grande Valley

    The Tamaulipan thorn forest once covered 1 million acres on both sides of the US-Mexico…

    How Much It Costs & Everything Else

    April 13, 2023

    Banking body BIS urges decisive wave of global rate hikes to stem inflation

    June 26, 2022

    If the US government shutdown doesn’t end soon, air travel disruptions will be likely

    November 10, 2025
    Archives
    Browse By Category
    • Books (1,007)
    • Business (5,912)
    • Events (29)
    • Film (5,848)
    • Lifestyle (3,958)
    • Music (5,949)
    • Politics (5,913)
    • Science (5,263)
    • Technology (5,842)
    • Television (5,526)
    • Uncategorized (6)
    • US News (5,900)
    About Us

    We are a creativity led international team with a digital soul. Our work is a custom built by the storytellers and strategists with a flair for exploiting the latest advancements in media and technology.

    Most of all, we stand behind our ideas and believe in creativity as the most powerful force in business.

    What makes us Different

    We care. We collaborate. We do great work. And we do it with a smile, because we’re pretty damn excited to do what we do. If you would like details on what else we can do visit out Contact page.

    Our Picks

    How Does the Hive Mind Work in ‘Pluribus?

    January 17, 2026

    The Uncertain Future Of The 4-Part Western Epic

    January 17, 2026

    Where Can You Watch Betty White’s Classic TV Shows?

    January 17, 2026
    © 2026 New York Examiner News. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms & Conditions and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
    Cookie SettingsAccept All
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT