Close Menu
New York Examiner News

    Subscribe to Updates

    Get the latest creative news from FooBar about art, design and business.

    What's Hot

    Pierce Brosnan reveals secrets to 24-year marriage with Keely Shaye Smith

    June 14, 2025

    New York passes a bill to prevent AI-fueled disasters

    June 14, 2025

    How a US agriculture agency became key in the fight against bird flu

    June 14, 2025
    Facebook X (Twitter) Instagram
    New York Examiner News
    • Home
    • US News
    • Politics
    • Business
    • Science
    • Technology
    • Lifestyle
    • Music
    • Television
    • Film
    • Books
    • Contact
      • About
      • Amazon Disclaimer
      • DMCA / Copyrights Disclaimer
      • Terms and Conditions
      • Privacy Policy
    New York Examiner News
    Home»Science»Using Bacteria to Accelerate CO2 Capture in Oceans
    Science

    Using Bacteria to Accelerate CO2 Capture in Oceans

    By AdminMay 17, 2022
    Facebook Twitter Pinterest LinkedIn WhatsApp Email Reddit Telegram
    Using Bacteria to Accelerate CO2 Capture in Oceans


    You may be familiar with direct air capture, or DAC, in which carbon dioxide is removed from the atmosphere in an effort to slow the effects of climate change. Now a scientist at Lawrence Berkeley National Laboratory (Berkeley Lab) has proposed a scheme for direct ocean capture. Removing CO2 from the oceans will enable them to continue to do their job of absorbing excess CO2 from the atmosphere.

    Experts mostly agree that combating climate change will take more than halting emissions of climate-warming gases. We must also remove the carbon dioxide and other greenhouse gases that have already been emitted, to the tune of gigatons of CO2 removed each year by 2050 in order to achieve net zero emissions. The oceans contain significantly more CO2 than the atmosphere and have been acting as an important carbon sink for our planet.

    Peter Agbo is a Berkeley Lab staff scientist in the Chemical Sciences Division, with a secondary appointment in the Molecular Biophysics and Integrated Bioimaging Division. He was awarded a grant through Berkeley Lab’s Carbon Negative Initiative, which is aiming to develop breakthrough negative emissions technologies, for his ocean capture proposal. His co-investigators on this project are Steven Singer at the Joint BioEnergy Institute and Ruchira Chatterjee, a scientist in the Molecular Biophysics and Integrated Bioimaging Division of Berkeley Lab.

    Q. Can you explain how you envision your technology to work?

    What I’m essentially trying to do is convert CO2 to limestone, and one way to do this is to use seawater. The reason you can do this is because limestone is composed of magnesium, or what’s called magnesium and calcium carbonates. There’s a lot of magnesium and calcium naturally resident in seawater. So if you have free CO2 floating around in seawater, along with that magnesium and calcium, it will naturally form limestone to a certain extent, but the process is very slow – borderline geologic time scales.

    It turns out that the bottleneck in the conversion of CO2 to these magnesium and calcium carbonates in seawater is a process that is naturally catalyzed by an enzyme called carbonic anhydrase. It’s not important to know the enzyme name; it’s just important to know that when you add carbonic anhydrase to this seawater mixture, you can basically accelerate the conversion of CO2 to these limestones under suitable conditions.

    And so the idea is to scale this up – drawing CO2 out of the atmosphere into the ocean and ultimately into some limestone product that you could sequester.

    Q. Fascinating. So you want to turn carbon dioxide into rock using a process that occurs naturally in seawater, but accelerating it. This sounds almost like science fiction. What are the challenges in getting this to work?

    To absorb CO2 from the air quick enough for the technology to work, you have to solve the problem of how to provide enough of this enzyme that you could deploy this process at a meaningful scale. If we were to simply try to supply the enzyme as a pure product, you couldn’t do it in an economically viable way. So the question I’m trying to answer here is, how would you do this? You also have to find ways of stabilizing the pH and mixing in enough air to raise and maintain your CO2 concentration in water.

    The solution that occurred to me was, okay, given that we know carbonic anhydrase is a protein, and proteins are naturally synthesized by biochemical systems, such as bacteria, which we can manipulate, then we could take bacteria and then engineer them to make carbonic anhydrase for us. And you can just keep growing these bacteria as long as you feed them. One problem, though, is that now you’ve shifted the cost burden onto supplying enough food to produce enough bacteria to produce enough enzyme.

    One way around this issue would be to use bacteria that can grow using energy and nutrients that are readily available in the natural environment. So this pointed towards photosynthetic bacteria. They can use sunlight as their energy source, and they can also use CO2 as their carbon source to feed on. And certain photosynthetic bacteria can also use the minerals that naturally occur in seawater essentially as vitamins.

    Q. Interesting. So the path to capturing excess CO2 lays in being able to engineer a microbe?

    Potentially one way, yes. What I’ve been working on in this project is to develop a genetically modified bacterium that is photosynthetic and is engineered to produce a lot of carbon anhydrase on its surface. Then, if you were to put it in seawater, where you have a lot of magnesium and calcium, and also CO2 present, you would see a rapid formation of limestone. That’s the basic idea.

    It’s a small project for now, so I decided to focus on getting the engineered organism. Right now, I’m simply trying to develop the primary catalyst system, which are the enzyme-modified bacteria to drive the mineralization. The other non-trivial pieces of this approach – how to appropriately design the reactor to stabilize CO2 concentrations and pH needed for this scheme to work – are future challenges. But I’ve been using simulations to inform my approaches to those problems.

    It’s a fun project because on any given day my co-PIs and I could be doing either physical electrochemistry or gene manipulation in the lab.

    Q. How would this look once it’s scaled up? And how much carbon would it be able to sequester?

    What I have envisioned is, the bacterium would be grown in a plant-scaled bioreactor. You basically flow seawater into this bioreactor while actively mixing in air, and it processes the seawater, converting it to limestone. Ideally, you probably have some type of downstream centrifugation process to extract the solids, which maybe could be driven by the flow of water itself, which then helps to pull out the limestone carbonates before you then eject the depleted seawater. An alternative that could possibly resolve the pH constraints of mineralization would be to implement this instead as a reversible process, where you also use the enzyme to reconvert the carbon you’ve captured in seawater back to a more concentrated CO2 stream (carbonic anhydrase behavior is reversible).

    What I’ve calculated for this system, assuming that the protein carbonic anhydrase behaves on the bacterial surface, more or less, the way it does in free solution, would suggest that you would need a plant that has only about a 1-million-liter volume, which is actually quite small. One of those could get you to roughly 1 megaton of CO2 captured per year. A lot of assumptions are built into that sort of estimate though, and it’s likely to change as work advances.

    Erecting 1,000 such facilities globally, which is a small number compared to the 14,000 water treatment facilities in the United States alone, would permit the annual, gigaton-scale capture of atmospheric CO2.

    Related



    Original Source Link

    Share. Facebook Twitter Pinterest LinkedIn WhatsApp Email Reddit Telegram
    Previous ArticleEmergency review – Sharp comedy with a stark underlying message
    Next Article How to Test Your Wi-Fi Speed

    RELATED POSTS

    How a US agriculture agency became key in the fight against bird flu

    June 14, 2025

    Are Those Viral ‘Cooling Blankets’ for Real?

    June 13, 2025

    Trump EPA Announces Climate Regulation Rollback but Faces Legal Hurdles

    June 13, 2025

    The Vera Rubin Observatory is about to completely transform astronomy

    June 12, 2025

    The EPA Wants to Roll Back Emissions Controls on Power Plants

    June 12, 2025

    New Map Shows How Gun Deaths of Children Have Increased in States with Loose Firearm Laws

    June 11, 2025
    latest posts

    Pierce Brosnan reveals secrets to 24-year marriage with Keely Shaye Smith

    NEWYou can now listen to Fox News articles! Pierce Brosnan and Keely Shaye Smith know…

    New York passes a bill to prevent AI-fueled disasters

    June 14, 2025

    How a US agriculture agency became key in the fight against bird flu

    June 14, 2025

    I Laughed Out Loud Throughout, But I Wish The Episode Packed More Punch

    June 14, 2025

    Steve Kornacki’s Sister Competes on Show – How’d She Do?

    June 14, 2025

    EVERYDAY CARRY: Contour | FashionBeans

    June 14, 2025

    Book Riot’s Deals of the Day for June 13, 2025

    June 14, 2025
    Categories
    • Books (578)
    • Business (5,487)
    • Events (5)
    • Film (5,427)
    • Lifestyle (3,530)
    • Music (5,492)
    • Politics (5,471)
    • Science (4,837)
    • Technology (5,418)
    • Television (5,091)
    • Uncategorized (6)
    • US News (5,473)
    popular posts

    Animal Crossing Design Makes An Adorable My Neighbor Totoro Meadow

    An Animal Crossing: New Horizons player has shown off how they used a custom path…

    Pet-friendly apartment tips and activities in NYC

    June 10, 2024

    AI can use your brainwaves to see things that you can’t

    July 8, 2022

    New Poll Finds Biden is Underwater by 38 Points With Independent Voters | The Gateway Pundit

    September 12, 2023
    Archives
    Browse By Category
    • Books (578)
    • Business (5,487)
    • Events (5)
    • Film (5,427)
    • Lifestyle (3,530)
    • Music (5,492)
    • Politics (5,471)
    • Science (4,837)
    • Technology (5,418)
    • Television (5,091)
    • Uncategorized (6)
    • US News (5,473)
    About Us

    We are a creativity led international team with a digital soul. Our work is a custom built by the storytellers and strategists with a flair for exploiting the latest advancements in media and technology.

    Most of all, we stand behind our ideas and believe in creativity as the most powerful force in business.

    What makes us Different

    We care. We collaborate. We do great work. And we do it with a smile, because we’re pretty damn excited to do what we do. If you would like details on what else we can do visit out Contact page.

    Our Picks

    EVERYDAY CARRY: Contour | FashionBeans

    June 14, 2025

    Book Riot’s Deals of the Day for June 13, 2025

    June 14, 2025

    Bonnaroo 2025 Cancels Remainder of Festival Due to Severe Weather

    June 14, 2025
    © 2025 New York Examiner News. All rights reserved. All articles, images, product names, logos, and brands are property of their respective owners. All company, product and service names used in this website are for identification purposes only. Use of these names, logos, and brands does not imply endorsement unless specified. By using this site, you agree to the Terms & Conditions and Privacy Policy.

    Type above and press Enter to search. Press Esc to cancel.

    We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept All”, you consent to the use of ALL the cookies. However, you may visit "Cookie Settings" to provide a controlled consent.
    Cookie SettingsAccept All
    Manage consent

    Privacy Overview

    This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
    Necessary
    Always Enabled
    Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
    CookieDurationDescription
    cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
    cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
    cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
    cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
    cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
    viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
    Functional
    Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
    Performance
    Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
    Analytics
    Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
    Advertisement
    Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
    Others
    Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
    SAVE & ACCEPT